
NPN Silicon Expitaxial Planar Transistor for switching and amplifier applications.

As complementary types the PNP transistors HN / 2N 3905 and HN / 2N 3906 are recommended.

On special request, these transistors can be manufactured in different pin configurations. Please refer to the "TO-92 TRANSISTOR PACKAGE OUTLINE" on page 80 for the available pin options.

TO-92 Plastic Package Weight approx. 0.18 g Dimensions in mm

	Symbol	Value	Unit V	
Collector Base Voltage	V _{CBO}	60		
Collector Emitter Voltage	V _{CEO}	40	v	
Emitter Base Voltage	V _{EBO}	6	V	
Collector Current	I _c	100	mA	
Peak Collector Current	I _{CM}	200	mA	
Power Dissipation at T _{amb} = 25°C	P _{tot}	500 ¹⁾	mW	
Junction Temperature	T	150	°C	
Storage Temperature Range	T _s	-55 to +150	°C	

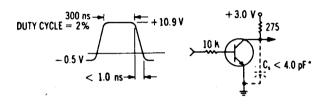
Absolute Maximum Ratings ($T_a = 25^{\circ}C$)

G S P FORM A AVAILABLE

(wholly owned subsidiary of HONEY TECHNOLOGY LTD.)

Characteristics at $T_{amb} = 25 \text{ °C}$

		Symbol	Min.	Тур.	Max.	Unit
DC Current Gain		•				
at $V_{ce} = 1V$, $I_c = 0.1$ mA	HN / 2N 3903 HN / 2N 3904	h _{FE}	20 40	-	-	-
at M = 1 M = 1 m A	HN / 2N 3904 HN / 2N 3903	h _{FE}	40 35	-		-
at $V_{ce} = 1V$, $I_c = 1$ mA	HN / 2N 3903	h _{FE} h _{FE}	35 70	-	-	-
at $V_{ce} = 1V$, $I_c = 10$ mA	HN / 2N 3903	h _{FE}	50 100	-	150 300	-
at $V_{cr} = 1V$, $I_c = 50$ mA	HN / 2N 3904 HN / 2N 3903	h _{FE}	30	-	300	-
at $v_{CE} = 10$, $I_C = 50$ mA	HN / 2N 3903	h _{FE}	60	-	-	-
at V _{CF} = 1V, I _C = 100 mA	HN / 2N 3903	h _{FE}	15	-	-	-
	HN / 2N 3904	h _{FE}	30	-	-	-
Thermal Resistance Junction to	Ambient	R _{thA}	-	-	250 ¹⁾	K/W
Collector Saturation Voltage	· · · · · · · · · · · · · · · · · · ·					
at $l_c = 10$ mA, $l_B = 1$ mA		V _{CE sat}		-	0.2	V
at $I_{c} = 50 \text{ mA}$, $I_{B} = 5 \text{ mA}$		V _{CE sat}	-	-	0.3	V
Base Saturation Voltage						
at $I_c = 10 \text{ mA}$, $I_B = 1 \text{ mA}$		V _{BE sat}	-	-	0.85	V V
at $I_{c} = 50 \text{ mA}$, $I_{B} = 5 \text{ mA}$		V _{BE sat}	-	-	0.95	V
Collector Cutoff Current						
$V_{_{\rm EB}}$ = 3 V, $V_{_{\rm CE}}$ = 30 V		I _{CEV}	-	-	50	nA
Emitter Cutoff Current						
$V_{EB} = 3 \text{ V}, V_{CE} = 30 \text{ V}$		I _{EBV}	-	-	50	nA
Collector Base Breakdown Voltag	ge					
at $I_{c} = 10 \ \mu A$, $I_{E} = 0$		V _{(BR)CBO}	60	-	-	V
Collector Emitter Breakdown Vol	age					
at I _c = 1 mA, I _B = 0	5	V _{(BR)CEO}	40	-	-	V
Emitter Base Breakdown Voltage						
at $I_F = 10 \mu A$, $I_C = 0$		V _{(BR)EBO}	6	-	-	V
Gain Bandwidth Product						
at $V_{cr} = 20 \text{ V}$, $I_c = 10 \text{ mA}$, f = 100MHz	HN / 2N 3903	f	250			MHz
at $v_{CE} = 20$ v, $r_{C} = 10$ mA, $r = 10000$ H2		f _T		-	-	
	HN / 2N 3904	f _T	300	-	-	MHz
Collector Base Capacitance at V _{CB} = 5V, f = 100 kHz		С _{сво}	-	-	4	pF
Emitter Base Capacitance at V _{FR} = 0.5V, f = 100 kHz		C _{EBO}	-	-	8	pF



HN / 2N 3903/3904

Characteristics (continued)

	Symbol	Min.	Тур.	Max.	Unit
Rise Time (see Fig. 1) at I _{B1} = 1 mA, I _c = 10mA	t, •	-	-	70	ns
Fall Time (see Fig. 2) at $-I_{B1} = I_{B2} = 1$ mA, $I_{C} = 10$ mA	t	-	-	200	ns

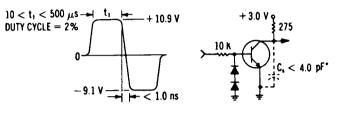


Fig. 1: Test circuit for delay and rise time * total shunt capacitance of test jig and connectors Fig. 2: Test circuit for storage and fall time * total shunt capacitance of test jig and connectors

 $\begin{array}{c} \textbf{SEMTECH ELECTRONICS LTD.} \\ (\ wholly \ owned \ subsidiary \ of \ \ \textbf{HONEY TECHNOLOGY LTD.} \end{array}) \end{array}$

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.